• Guest
HabraHabr
  • Main
  • Users

  • Development
    • Programming
    • Information Security
    • Website development
    • JavaScript
    • Game development
    • Open source
    • Developed for Android
    • Machine learning
    • Abnormal programming
    • Java
    • Python
    • Development of mobile applications
    • Analysis and design of systems
    • .NET
    • Mathematics
    • Algorithms
    • C#
    • System Programming
    • C++
    • C
    • Go
    • PHP
    • Reverse engineering
    • Assembler
    • Development under Linux
    • Big Data
    • Rust
    • Cryptography
    • Entertaining problems
    • Testing of IT systems
    • Testing Web Services
    • HTML
    • Programming microcontrollers
    • API
    • High performance
    • Developed for iOS
    • CSS
    • Industrial Programming
    • Development under Windows
    • Image processing
    • Compilers
    • FPGA
    • Professional literature
    • OpenStreetMap
    • Google Chrome
    • Data Mining
    • PostgreSQL
    • Development of robotics
    • Visualization of data
    • Angular
    • ReactJS
    • Search technologies
    • Debugging
    • Test mobile applications
    • Browsers
    • Designing and refactoring
    • IT Standards
    • Solidity
    • Node.JS
    • Git
    • LaTeX
    • SQL
    • Haskell
    • Unreal Engine
    • Unity3D
    • Development for the Internet of things
    • Functional Programming
    • Amazon Web Services
    • Google Cloud Platform
    • Development under AR and VR
    • Assembly systems
    • Version control systems
    • Kotlin
    • R
    • CAD/CAM
    • Customer Optimization
    • Development of communication systems
    • Microsoft Azure
    • Perfect code
    • Atlassian
    • Visual Studio
    • NoSQL
    • Yii
    • Mono и Moonlight
    • Parallel Programming
    • Asterisk
    • Yandex API
    • WordPress
    • Sports programming
    • Lua
    • Microsoft SQL Server
    • Payment systems
    • TypeScript
    • Scala
    • Google API
    • Development of data transmission systems
    • XML
    • Regular expressions
    • Development under Tizen
    • Swift
    • MySQL
    • Geoinformation services
    • Global Positioning Systems
    • Qt
    • Dart
    • Django
    • Development for Office 365
    • Erlang/OTP
    • GPGPU
    • Eclipse
    • Maps API
    • Testing games
    • Browser Extensions
    • 1C-Bitrix
    • Development under e-commerce
    • Xamarin
    • Xcode
    • Development under Windows Phone
    • Semantics
    • CMS
    • VueJS
    • GitHub
    • Open data
    • Sphinx
    • Ruby on Rails
    • Ruby
    • Symfony
    • Drupal
    • Messaging Systems
    • CTF
    • SaaS / S+S
    • SharePoint
    • jQuery
    • Puppet
    • Firefox
    • Elm
    • MODX
    • Billing systems
    • Graphical shells
    • Kodobred
    • MongoDB
    • SCADA
    • Hadoop
    • Gradle
    • Clojure
    • F#
    • CoffeeScript
    • Matlab
    • Phalcon
    • Development under Sailfish OS
    • Magento
    • Elixir/Phoenix
    • Microsoft Edge
    • Layout of letters
    • Development for OS X
    • Forth
    • Smalltalk
    • Julia
    • Laravel
    • WebGL
    • Meteor.JS
    • Firebird/Interbase
    • SQLite
    • D
    • Mesh-networks
    • I2P
    • Derby.js
    • Emacs
    • Development under Bada
    • Mercurial
    • UML Design
    • Objective C
    • Fortran
    • Cocoa
    • Cobol
    • Apache Flex
    • Action Script
    • Joomla
    • IIS
    • Twitter API
    • Vkontakte API
    • Facebook API
    • Microsoft Access
    • PDF
    • Prolog
    • GTK+
    • LabVIEW
    • Brainfuck
    • Cubrid
    • Canvas
    • Doctrine ORM
    • Google App Engine
    • Twisted
    • XSLT
    • TDD
    • Small Basic
    • Kohana
    • Development for Java ME
    • LiveStreet
    • MooTools
    • Adobe Flash
    • GreaseMonkey
    • INFOLUST
    • Groovy & Grails
    • Lisp
    • Delphi
    • Zend Framework
    • ExtJS / Sencha Library
    • Internet Explorer
    • CodeIgniter
    • Silverlight
    • Google Web Toolkit
    • CakePHP
    • Safari
    • Opera
    • Microformats
    • Ajax
    • VIM
  • Administration
    • System administration
    • IT Infrastructure
    • *nix
    • Network technologies
    • DevOps
    • Server Administration
    • Cloud computing
    • Configuring Linux
    • Wireless technologies
    • Virtualization
    • Hosting
    • Data storage
    • Decentralized networks
    • Database Administration
    • Data Warehousing
    • Communication standards
    • PowerShell
    • Backup
    • Cisco
    • Nginx
    • Antivirus protection
    • DNS
    • Server Optimization
    • Data recovery
    • Apache
    • Spam and antispam
    • Data Compression
    • SAN
    • IPv6
    • Fidonet
    • IPTV
    • Shells
    • Administering domain names
  • Design
    • Interfaces
    • Web design
    • Working with sound
    • Usability
    • Graphic design
    • Design Games
    • Mobile App Design
    • Working with 3D-graphics
    • Typography
    • Working with video
    • Work with vector graphics
    • Accessibility
    • Prototyping
    • CGI (graphics)
    • Computer Animation
    • Working with icons
  • Control
    • Careers in the IT industry
    • Project management
    • Development Management
    • Personnel Management
    • Product Management
    • Start-up development
    • Managing the community
    • Service Desk
    • GTD
    • IT Terminology
    • Agile
    • Business Models
    • Legislation and IT-business
    • Sales management
    • CRM-systems
    • Product localization
    • ECM / EDS
    • Freelance
    • Venture investments
    • ERP-systems
    • Help Desk Software
    • Media management
    • Patenting
    • E-commerce management
    • Creative Commons
  • Marketing
    • Conferences
    • Promotion of games
    • Internet Marketing
    • Search Engine Optimization
    • Web Analytics
    • Monetize Web services
    • Content marketing
    • Monetization of IT systems
    • Monetize mobile apps
    • Mobile App Analytics
    • Growth Hacking
    • Branding
    • Monetize Games
    • Display ads
    • Contextual advertising
    • Increase Conversion Rate
  • Sundry
    • Reading room
    • Educational process in IT
    • Research and forecasts in IT
    • Finance in IT
    • Hakatonas
    • IT emigration
    • Education abroad
    • Lumber room
    • I'm on my way

Доббль: практичный подход с OpenCV и NumPy / Хабр

О чём мы вспоминаем в первую очередь, когда слышим про распознавание образов? Сложные нейронные сети, мощные видеокарты, объёмные наборы данных. Всего этого не будет в моей истории - я расскажу, как с помощью OpenCV и NumPy можно за 1 вечер решить задачу классификации 57 символов из игры Доббль, используя менее 500 их изображений без дополнительной аугментации. Разный масштаб, произвольный угол поворота - всё это не имеет значения, когда для описания символа достаточно четырёх чисел.Доббль: практичный подход с OpenCV и NumPy / ХабрЭта история произошла весной 2020 года, во время вынужденной самоизоляции. Я смотрел ролики на youtube и наткнулся на интересную игру - Доббль, или по-другому SpotIt. В местных магазинах я вряд ли смог бы её найти, а в условиях самоизоляции вариант с заказом тоже выглядел довольно призрачно. В результате нашёл в сети файл с изображениями карточек, распечатал на плотной фотобумаге и вырезал - получился довольно аккуратный набор. Сыну игра понравилась, стали играть.На второй день внезапно выяснилось, что в наборе присутствуют две абсолютно одинаковые карточки. Дубль было решено отложить в сторону. В игре появились ничьи и какое-то чувство неправильности, не дающее забыть, что мы играем неполным набором. Что же делать? Я скачал еще один архив с изображениями карточек, но искать вручную какой же из них не хватает или тем более печатать и вырезать новый набор не хотелось.И тут на Хабре обнаружилась статья "Как я научила свой компьютер играть в Доббль с помощью OpenCV и Deep Learning". Казалось бы, вот оно - решение, но… Проанализировав код, я понял, что у подобного решения есть два фатальных недостатка - нарезка и разметка такого количества картинок займет слишком много времени, а тренировка модели на машине с неподдерживаемой видеокартой продлится еще дольше. Стал думать.Почему бы не использовать для описания символов только ту информацию, которую можно получить с помощью OpenCV? По идее, любой символ характеризуется соотношением длин сторон прямоугольника, в который он вписан. Выбрать такой прямоугольник минимального размера - подходящая задача для библиотеки машинного зрения. Но как быть с круглыми символами - часы, "кирпич", инь-янь, да даже ромашка или солнце? Попробую добавить среднее значение по каждому цветовому каналу. Написал код, который ищет контуры отдельных символов, определяет описывающий прямоугольник, вырезает и раскладывает файлы по отдельным папкам.На самом деле, механизм определения прямоугольника минимального размера в OpenCV не всегда правильно срабатывает - это видно на примере картинки с якорем: она периодически скатывается в неоптимальный симметричный квадрат.Чтобы облегчить дальнейшую разметку, названия папок соответствуют соотношению длин сторон прямоугольника, а названия файлов содержат все описывающие символ параметры и номер карточки. Потом запустил IrfanView в режиме миниатюр и перетащил в нужные папки неточно распределённые файлы. Это самый трудоёмкий и длительный этап работ, но благодаря тому что файлы были уже сгруппированы он длился меньше часа. В завершение переименовал папки в соответствии с номером и названием содержащегося в них символа.Один из неудачных вариантов автоматической разметкиПотом я обучил нейросеть - многослойный перцептрон (MLP). Сеть сделал на основе учебного примера из книги "Python Machine Learning" Себастьяна Рашки, для её реализации достаточно пакета NumPy.В качестве входных данных использовал список файлов с символами - содержащейся в нём информации достаточно для обучения сети. Название папки с символами начинается с двузначного числа - номер символа, используем его как метку. Имя файла содержит 4 числа, соответствующие параметрам символа. Значение всех параметров оказалось в пределах 45..255, поэтому для полного использования диапазона 0..1 вычитаем из них 45 и делим на 210. Так как данных мало, в качестве тестового набора используем часть тренировочного. В списке 440 файлов, время обучения составило около 1 минуты.И всё равно в результате проверки идеи выявились коллизии, не дающие правильно опознать символ. Пришлось добавить еще один параметр - отношение площади символа к площади описывающего его прямоугольника (я назвал его "плотность"). В результате этот параметр оказался очень полезным, от одного из цветовых каналов удалось избавиться. Единичные символы теперь распознавались устойчиво по четырём признакам.Казалось бы, можно брать файл с карточкой, распознавать первые 8 самых крупных символов и получится описание карточки. Но тут выявилась другая проблема - некоторые символы состоят из нескольких отдельных частей, а с учётом разного масштаба мелкая часть одного может оказаться крупнее другого. Пришлось добавить в набор данных символы точек от восклицательного и вопросительного знаков и пропускать их при подсчете найденных символов.Когда сеть была готова, составил список имеющихся у меня карточек и карточек из нового архива. Они выглядели немного по-другому, на нескольких пришлось разделять соприкасающиеся между собой символы - это мешало правильному обнаружению контуров в OpenCV. В результате недостающая карточка была найдена и напечатана.Проверка работы нейросетиРади интереса проверил производительность - полный проход по колоде из 55 карточек (1485 комбинаций) занял 170 секунд, ошибок 0. Была идея сделать распознавание карточек по изображению с веб-камеры, но оказалось, что они сильно бликуют. Кроме того, у сети выявился недостаток - она сильно чувствительна к понижению разрешения картинки: мелкие детали (например, лучи снежинки) сливаются и это приводит к изменению параметров. Но сделать на ней игру с поиском совпадений по двум карточкам можно. Или использовать уже размеченные изображения символов для создания полноценного датасета и тренировки свёрточной нейронной сети.Во всяком случае, данный способ распознавания карточек свою задачу решил, и на его реализацию потребовалось относительно немного времени. Весь необходимый код доступен в GitHub.

It may be interesting

  • Comments
  • About article
  • Similar news
This publication has no comments.

m7jgbhr974

Author

13-01-2021, 18:40

Publication Date

Development / Programming

Category
  • Comments: 0
  • Views: 11
Покупка подержанных видеокарт в Китае.
OpenCV в Python. Часть 2 / Хабр
Определяем пульс по вебкамере в 50
10 историй про IT-трансформацию в
Insert numpy array into MySQL database
Установка OpenCV-Python на виртуальной
Write a comment
Name:*
E-Mail:


Comments
Thorough and trustworthy home inspection services for Hampton Roads. At First Glance, we inspect and treat your home as if it was our family moving in. Check out: Home Inspection Company
Yesterday, 23:05

stgenevive

Buy the best Natural Hand-Carved Human Head stone skull at soulcharms for chakra balancing, reiki energy healing, meditation, yoga, stress, anxiety depression
Yesterday, 20:22

raymond weber

Nice post! This is a very nice blog that I will definitively come back to more times this year! Thanks for informative post.Torrance Tax Accountant

Yesterday, 15:51

raymond weber

Someone Sometimes with visits your blog regularly and recommended it in my experience to read as well. The way of writing is excellent and also the content is top-notch. Thanks for that insight you provide the readers! 123movies websites 
Yesterday, 15:21

Legend SEO

Extremely intriguing online journal. A lot of web journals I see nowadays don't generally give anything that I'm keen on, however I'm most definitely inspired by this one. Recently felt that I would post and let you know.먹튀

Yesterday, 15:14

raymond weber

Adv
Website for web developers. New scripts, best ideas, programming tips. How to write a script for you here, we have a lot of information about various programming languages. You are a webmaster or a beginner programmer, it does not matter, useful articles will help to make your favorite business faster.

Login

Registration Forgot password